Challenges and New Approaches for
Complex Trait Mapping in Ancestrally
Diverse Populations

Timothy Thornton, PhD
Robert W. Day Endowed Professor of Public Health
Department of Biostatistics
University of Washington

SAGES 2017
June 9, 2017

2wz, SCHOOL OF PUBLIC HEALTH
& UNIVERSITY of WASHINGTON




Introduction

» To date, the genomes of

tens of millions of
individuals have been
interrogated in GWAS and
sequencing association
studies for the mapping of
complex traifs.

* The vast majority of these

studies, however, have
been conducted in
populations of European
ancestry

SAMPLING BIAS

Most genome-wide association studies have
been of people of European descent.

96%

European
descent

4% Non-
European
descent

Bustamante et al. (Nature, 20%l)



Current State of Affairs
PERSISTENT BIAS

Over the past seven years, the proportion of participants in genome-wide
association studies (GWAS) that are of Asian ancestry has increased.
Groups of other ancestries continue to be very poorly represented.

2009 2016

373 studies 2,511 studies
1.7 million samples 35 million samples

% %
96% 81%
European European
ancestry ancestry
Asian
Other non-
European
[ ‘

4% Non- 19% Non-
European European
ancestry ancestry

Popejoy and Fullerton (Nature, 2016)



Need for Genetic Studies
in Diverse Populations

Medical genomics has focused almost entirely on those of
European descent.

Other race and ethnic groups must be studied to ensure that
more people benefit




The U.S. Precision Medicine Initiative®
Cohort Program




“And that’s why we're here today.
Because something called Precision Medicine ... gives us one of
the greatest opportunities for new medical breakthroughs that

we have ever seen.”

State of the Union Address
January 20, 2015



Precision Medicine
Initiative

* NIH launched the Precision
Medicine Inifiative (PMI) in 2015

o PMI Cohort Program will build a large research
cohort of one million or more Americans

o Goalis to support and advance the targeted
prevention and tfreatment strategies that take an
individual's unigue characteristics info account,
including individual genome sequences,
environmental factors and lifestyles.



TOPMed WGS Project

NIH/NHLBI Trans-Omics for Precision Medicine
(TOPMed) Program is a component of the PMI

TOPMed Whole-genome-sequence (WGS) project
currently generating deep WGS data for over 120,000
individuals

More than 30 cohorts studies with well-defined
phenotypes and existing clinical outcomes data:

Primary aims is to identity genetic variants for
iIncreased or decreased risk of disease, as well as those
that help define disease subtypes.

As of January 2017, 62,000 whole genomes have been
completed

University of Washington Genetic Analysis Center is the
Data Coordinating Center for the TOPMed WGS
Project



Multi-ethnic TOPMed Cohorts

« Concerted effort to be reflective of the diverse
ancestries of the U.S. population.

TOPMED COHORTS: PHASE 1
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Asian 20,
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TOPMed WGS Project:
Opportunities

» |dentification of novel low frequency and rare genetic
variants underlying phenotypic diversity

« Potential to provide new insights in human health and
health disparities of minority populations for many
complex diseases



TOPMed WGS Project: Challenges

 Some of the challenges for TOPMed
WGS data:

= Multi-ethnic populations

= Variety of study designs: family, case-control,
cohort based designs, founder populations
(Amish).

= Confounding due to highly heterogeneous
genetic and environmental backgrounds

= Computational burden for analysis of deep
whole genome sequence data for 120,000+
individuals

= Population structure inference and correction
with whole genome sequencing data: common
and rare variants



Genetic Relatedness in
Multi-ethnic Populations

The genealogy of individuals in a sample consists of:
o Distant genetic relatedness, such as population structure

o Recent genetic relatedness: pedigree relationships of
close relatives (known and crypficl)

Samples from ancestrally diverse populations have
complex genealogy due to ancestry admixture and both
recent and distant genetic relatedness

Distinguishing familial relatedness from ancestry using
genotype data in diverse populations is difficult, as both
manifest as genetic similarity through the sharing of alleles.



Complex Genealogy of Mullti-
Ethnic Admixed Populations




Ancestry Admixture
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Recent versus Distant Genetic
Relatedness

« Distinguishing familial relatedness from ancestry using
genotype data in diverse populations is difficult, as
both manifest as genetic similarity through the sharing

of alleles.

Ancestral Population
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Deconvolution of Genetic Relatedness

Conomos et al., Am J Hum Genet, 2016
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Recent versus Distant Genetic
Relatedness

« Distinguishing familial relatedness from ancestry using
genotype data in diverse populations is difficult, as
both manifest as genetic similarity through the sharing

of alleles.

Ancestral Population
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kinship estimate

TOPMed Recent Genetic Relatedness
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kinship estimate

TOPMed Recent Genetic Relatedness

Unexpected relatedness that does not match
“known" pedigrees.

Example: Framingham Heart Study
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TOPMed Recent Genetic Relatedness

* Finding “unexpected’ relatedness across
TOPMed cohort studies as well

kinship estimate

0.54

0.4+

0.34

0.24

0.14

0.5+

0.44

0.34

0.24

0.14

0.54

0.44

0.3

0.2+

0.14

Amish Asthma_PGx Atrial_Fib
e
~.
L
=, LY
COPD Framingham Jackson
[:2
®
... \ ) ™
00 02 04 06 08 00 02 04 06 08
Sleep

00 02 04 06 08

study2

@ Amish

e Asthma_PGx
@ Atrial_Fib

® COPD

© Framingham
® Jackson

@ Sleep



Genetic Ancestry Inference in TOPMed
(with PC-AiR)
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TOPMed: Population Structure Inference
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Genetic association mapping in
the TOPMed samples: diverse
ancestries and complex sample

structure.



Linear Mixed Models

* Linear mixed models (LMMs) have emerged as
a powerful and effective approach for
genetic association testing of single variants in
the presence of sample structure
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Association Mapping in Multi-
Ethnic Populations

 Matt Conomos PhD work developed LMM-OPS
for association mapping in ancestrally diverse
populations

* LMM-OPS, linear mixed models with orthogonal
partitioned structure

« Appropriately accounts for the complex
genealogy of ancestrally diverse samples by
partitioning sample structure into two
orthogonal components:

1. acomponent for the sharing of dlleles
iInherited identical by descent (IBD) from
recent common ancestors, which
represents familial relatedness

2. and another component for allele sharing
due to more distant common ancestry,
which represents population structure.




New LMM approach for
Admixed Populations

With LMM-OPS, a score test for association is

calculated based on the following linear mixed
model:

Y =g.0; + X + Vv + € with ewN(O,ZEUEfI)JrUEZI)

where:

* & Is an genetic relatedness matrix adjusted for
ancestry admixture (via the PCs) with PC-Relate

* V is a matrix with PCs from PC-AIR, and 7is a
vector (unknown) ancestry effects on the phenotype

X is a matrix of covariate values with vector « of
_covariate effects



Applications and Discoveries Iin

Hispanic/Latino Populations
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TOPMed Association Analysis with
Linear Mixed Models

LMM-OPS worked well for the Hispanic Community
Health Study / Study of Latinos

Applied LMM-OPS to a few TOPMed phenotypes
that are well-defined with previously identified and
replicated genome-wide significant variants

Conducted a mega-analysis for a combined
analysis of all studies Included variants in the
association analysis that have a minor allele count
2 10 in all studies combined



~log,o(observed P)

TOPMed: BMI and Hemoglobin

analysis with LMM-OPS
 What went wrong in TOPMed?

BMI TOPMed Association

lambda = 1.411

i

:
!

4
-logyolexpected P)

Hemoglobin TOPMed Association
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What About Non-Genetic /
Environmental Factors?

WHAT CAN | SAY? T WAS
CURSED WITH BAD GeNET\CS.




Confounding in TOPMed due to
genetic and non-genetic factors

Ethnic groups (and subgroups) often share distinct
dietary habits and other lifestyle characteristics that
result in fraits of interest having different distributions
that are correlated with genetic ancestry and/or

ethnicity.

association of interest
Genotype »|  Trait

association association



Heterogeneity in Phenotypic Variance in TOPMed

« For some TOPMed traits, we are seeing significant
heterogenelty in phenotypic distributions across
different ethnic/ancestry groups in TOPMed

» Self reported ethnicity in TOPMed Phase |

American Indian or Alaska Native 20
Asian 3
Black 5113
More than one race 20
Native Hawaiian or Pacific Islander 381
Other 1987
White 5823




TOPMed Hemoglobin Distributions

Hemoglobin Boxplots
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BMI

Quantile Normalized BMI

TOPMed BMI Distributions

BMI Boxplots
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Heterogeneity in Phenotypic Variance in TOPMed

« Extended LMM-OPS 1o allow for multiple random
effects to be included in the model, in addition to a

kinship/genetic relatedness mairix.

« Used LMM-OPS with additional random effects to
allow for heterogeneous variances in TOPMed by
study or self-reported race/ ethnicity.



Heterogeneity in Hemoglobin Phenotypic
Variances: By Study

* Association results for Hemoglobin allowing for
heterogeneous phenotypic variances

Homogenous Residual Variance = Heterogeneous Residual Variances by Study
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Heterogeneity in BMI Phenotypic Variances

* Association results for body mass index (BMI)
allowing for heterogeneous phenotypic variances

Homogenous Residual Variance = Heterogeneous Residual Variances by Study

lambda = 1.411 lambda = 1.029
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LMM with heterogenous
residual variances for BMI

« Residual variance components of BMI for a few
studies in TOPMed

TopMed Cohort Study Phenotypic Residual
Variances

Jackson Heart Study 35.44
CFS 52.33
Framingham Heart Study 13.14
Amish 12.19
COPDGene 26.61

HVH 61.31



Allowing for heterogeneity in variances: By Self-

Reported Race

There are limitations with modeling heterogenous
variances by study.

Some TOPMed studies have multiple
ethnicities/ancestries.

Also explored the differences in BMI distribution by
self-reported race.



TOPMed BMI Distributions: By Race

BMI Boxplots by Self-Reported Race
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Heterogeneity in BMI Phenotypic Variances: Study

vs. Self-Reported Race

« Association results for body mass index (BMI)
allowing for heterogeneous phenotypic variances

Heterogenous Residual Variance by Study Heterogenous Residual Variance by Race
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Hemoglobin Single Variant Tests: Mega-Analysis

 Hemoglobin data results for three phase | TOPMed
studies: Framingham Heart Study, Jackson Hearty Study,

and the Amish

« Considered variants with minor allele count = 10 in all
studies combined: 29,342,569 variants tested for
association

lambda = 0.9979

Hemoglobin
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Hemoglobin Single Variant Tests: Meta-Analysis

~logo(p)

Association analysis conducted within each study
separately

Meta-analysis of the association results across all studies
/7,570,618 variants tested for association

No significant results

lambda = 1.006

Meta, A=1.006
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Association testing with rare
variants in TOPMed



TOPMed Association Analysis with

rare variants

There are an abundance of rare variants in the
TOPMed WGS

Phase 1 of TOPMed has 18,526 samples and
219,154,455 variants.

95,252,627 of the variants are singletons

Extended widely used aggregate tests, such as
SKAT and burden tests, for association testing of
multiple rare variants in TOPMed.

Allow for heterogenous variances



TOPMed Hemoglobin

Used a sliding window for the units:
50 kilobases

142,293 windows
Considered rare variants only (MAF <1%) in each window
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SOFTWARE

GENESIS: R software package is available from
Bioconductor

Installation in R:
« source("hitps://bioconductor.org/bioclite.R")
» bioclite("GENESIS")

Current release of GENESIS:
PC-AIR
PC-Relate

e Recentrelease includes LMM-OPS
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