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Introduction
• To date, the genomes of 

tens of millions of 
individuals have been 
interrogated in GWAS and 
sequencing association 
studies for the mapping of 
complex traits.

• The vast majority of these 
studies, however, have 
been conducted in  
populations of European 
ancestry

Bustamante et al. (Nature, 2011)



Popejoy and Fullerton (Nature, 2016)

Current State of Affairs



Need for Genetic Studies 
in Diverse  Populations

• Medical genomics has focused almost entirely on those of 
European descent. 

• Other race and ethnic groups must be studied to ensure that 
more people benefit 

Bustamante et al. (Nature, 2011)



The U.S. Precision Medicine Initiative®  
Cohort Program



“And that’s why we’re here today. 
Because something called Precision Medicine … gives us one of 
the greatest opportunities for new medical breakthroughs that 

we have ever seen.”

State of the Union Address
January 20, 2015



Precision Medicine 
Initiative

• NIH  launched the Precision 
Medicine Initiative (PMI) in 2015 
o PMI Cohort Program will build a large research 

cohort of one million or more Americans 
o Goal is to support and advance the targeted 

prevention and treatment strategies that take an 
individual's unique characteristics into account, 
including individual genome sequences, 
environmental factors and lifestyles. 



TOPMed WGS Project 

• NIH/NHLBI Trans-Omics for Precision Medicine 
(TOPMed) Program is a component of the PMI

• TOPMed Whole-genome-sequence (WGS) project 
currently generating deep WGS data for over 120,000 
individuals 

• More than 30 cohorts studies with well-defined 
phenotypes and existing clinical outcomes data:

• Primary aims is to identify genetic variants for 
increased or decreased risk of disease, as well as those 
that help define disease subtypes. 

• As of January 2017, 62,000 whole genomes have been 
completed

• University of Washington Genetic Analysis Center is the 
Data Coordinating Center for the TOPMed WGS 
Project



Multi-ethnic TOPMed Cohorts
• Concerted effort to be reflective of the diverse 

ancestries of the  U.S. population. 

European
50%

African
30%

Hispanic/Latino
10%

Asian
8%

Pacific Islander
2%

TOPMED COHORTS: PHASE I



TOPMed WGS Project: 
Opportunities

• Identification of novel  low frequency and rare genetic 
variants underlying phenotypic diversity 

• Potential to provide new insights in human health and  
health disparities of minority populations for many 
complex diseases



TOPMed WGS Project: Challenges
• Some of the challenges for TOPMed

WGS data:  
§ Multi-ethnic populations
§ Variety of  study designs: family, case-control, 

cohort based designs, founder populations 
(Amish).

§ Confounding due to highly heterogeneous 
genetic and environmental backgrounds

§ Computational burden for analysis of deep 
whole genome sequence data for 120,000+ 
individuals

§ Population structure inference and correction 
with whole genome sequencing data: common 
and rare variants



Genetic Relatedness in 
Multi-ethnic Populations

• The genealogy of individuals in a sample consists of: 
o Distant genetic relatedness, such as population structure
o Recent genetic relatedness: pedigree relationships of 

close relatives  (known and cryptic!)

• Samples from ancestrally diverse populations have 
complex genealogy due to ancestry admixture and both 
recent and distant genetic relatedness

• Distinguishing familial relatedness from ancestry using 
genotype data in diverse populations is difficult, as both 
manifest as genetic similarity through the sharing of alleles. 



Complex Genealogy of Multi-
Ethnic Admixed Populations



Ancestry Admixture

Ancestral
Pop. B

Ancestral
Pop. A



Recent versus Distant Genetic 
Relatedness

• Distinguishing familial relatedness from ancestry using 
genotype data in diverse populations is difficult, as 
both manifest as genetic similarity through the sharing 
of alleles. 

Conomos et al. (AJHG, 2016)



Deconvolution of Genetic Relatedness 
• Conomos et al., Am J Hum Genet, 2016

• Conomos et al., Genet Epidemiology, 2015

• Thornton et al., Am J Hum Genet, 2012



Recent versus Distant Genetic 
Relatedness

• Distinguishing familial relatedness from ancestry using 
genotype data in diverse populations is difficult, as 
both manifest as genetic similarity through the sharing 
of alleles. 

Conomos et al. (AJHG, 2016)



TOPMed Recent Genetic Relatedness



TOPMed Recent Genetic Relatedness

• Unexpected relatedness that does not match 
“known” pedigrees.  

• Example: Framingham Heart Study 



TOPMed Recent Genetic Relatedness

• Finding “unexpected” relatedness across 
TOPMed cohort studies as well



Genetic Ancestry Inference in  TOPMed

(with PC-AiR)



TOPMed: Population Structure Inference



Genetic association mapping  in 

the  TOPMed samples:  diverse 

ancestries and complex sample 

structure.



Linear Mixed Models 
• Linear mixed models (LMMs) have emerged as 

a powerful and effective approach for 
genetic association testing of single variants in 
the presence of sample structure



Association Mapping in Multi-
Ethnic Populations

• Matt Conomos PhD work developed LMM-OPS
for association mapping in ancestrally diverse 
populations

• LMM-OPS, linear mixed models with orthogonal 
partitioned structure

• Appropriately accounts for the complex 
genealogy of ancestrally diverse samples  by 
partitioning sample structure into two 
orthogonal components: 
1. a component for the sharing of alleles 

inherited identical by descent (IBD) from 
recent common ancestors, which 
represents familial relatedness

2. and another component for allele sharing 
due to more distant common ancestry, 
which represents population structure. 



New LMM approach for 
Admixed Populations

• With LMM-OPS,  a score test for association  is 
calculated based on the following linear mixed 
model:

where:
• is an genetic relatedness matrix adjusted for 

ancestry admixture (via the PCs) with PC-Relate
• is a matrix with PCs from PC-AiR,   and    is a 

vector (unknown) ancestry effects on the phenotype
• is a matrix of covariate values with vector      of 

covariate effects
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Table 1: Genomic Control �GC for Association Testing Simulation Study

Method Genome-Wide Highlya Moderatelyb Lowlyc

Di↵erentiated Di↵erentiated Di↵erentiated

MMAAPS 0.998 (0.007) 0.999 (0.022) 0.998 (0.013) 0.998 (0.009)
EMMAX 0.998 (0.006) 1.079 (0.031) 1.011 (0.013) 0.980 (0.009)
GEMMA 1.002 (0.006) 1.091 (0.033) 1.015 (0.013) 0.981 (0.009)
EIGENSTRAT 1.022 (0.017) 1.024 (0.029) 1.021 (0.021) 1.022 (0.018)
Linear Reg. 13.23 (1.089) 86.72 (7.655) 33.85 (2.986) 4.714 (0.355)

a Highly di↵erentiated SNPs: |Ds| • 0.4 between the two ancestral populations.
b Moderately di↵erentiated SNPs: 0.4 ° |Ds| • 0.2 between the two ancestral populations.
c Lowly di↵erentiated SNPs: |Ds| † 0.2 between the two ancestral populations.

Table 2: Power for LMM Methods with h2s “ 0.0075

Method Genome-Wide
Highlya Moderatelyb Lowlyc

Di↵erentiated Di↵erentiated Di↵erentiated

Power at Level ↵ “ 5x10´8

MMAAPS 0.1867 0.1488 0.1809 0.1962
EMMAX 0.1742 0.1488 0.1668 0.1823
GEMMA 0.1759 0.1546 0.1695 0.1828

Power at Level ↵ “ 5x10´6

MMAAPS 0.4993 0.4435 0.4905 0.5134
EMMAX 0.4792 0.4290 0.4757 0.4896
GEMMA 0.4823 0.4377 0.4791 0.4916

a Highly di↵erentiated SNPs: |Ds| • 0.4 between the two ancestral populations.
b Moderately di↵erentiated SNPs: 0.4 ° |Ds| • 0.2 between the two ancestral populations.
c Lowly di↵erentiated SNPs: |Ds| † 0.2 between the two ancestral populations.

Y “ gs�s `XXX↵ ` ✏ with ✏ „ N
`
0,⌃ ” �2

A ` �2
✏ III

˘

Y “ gs�s `XXX↵ `VVV� ` ✏ with ✏ „ N
`
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A�` �2
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˘
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Applications and Discoveries in  

Hispanic/Latino Populations



TOPMed Association Analysis with 
Linear Mixed Models 

• LMM-OPS worked well for the Hispanic Community 
Health Study / Study of Latinos

• Applied LMM-OPS to a few TOPMed phenotypes 
that are well-defined with previously identified and 
replicated genome-wide significant variants

• Conducted a mega-analysis for a combined 
analysis of all studies Included variants in the 
association analysis that have a  minor allele count 
≥ 10 in all studies combined



TOPMed: BMI and Hemoglobin 
analysis with LMM-OPS

• What went wrong in TOPMed?
BMI TOPMed Association Hemoglobin TOPMed Association 



What About Non-Genetic / 
Environmental Factors?



Confounding in TOPMed due to 
genetic and non-genetic factors

• Ethnic groups (and subgroups) often share distinct 
dietary habits and other lifestyle characteristics that 
result in traits of interest having different distributions 
that are correlated with genetic ancestry and/or 
ethnicity. 



Heterogeneity in Phenotypic Variance in TOPMed

• For some TOPMed traits, we are seeing significant 
heterogeneity in phenotypic distributions across 
different ethnic/ancestry groups in TOPMed

• Self reported ethnicity in TOPMed Phase I



TOPMed Hemoglobin Distributions

●

●

●●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

5

10

15

20

AmishAtrial_FibFraminghamJackson
TopMed Study

He
m

og
lo

bi
n

TOPMed Study
Amish

Atrial_Fib

Framingham

Jackson

Hemoglobin Boxplots

●

●
●●●
●●
●

●

●
●

●

●●
●

●

●

●

●
●
●●
●

●

●●

●

●
●●●

●
●
●

●

●
●●

●

●

●
●●
●●
●

●
●

●

●
●

●●●
●
●
●
●
●●●●

●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●
●●●●
●●●
●
●
●
●

●

●

●●

●●

●
●●●

●●

●

●

●

●
●
●

●
●
●
●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●
●●●●●
●●●●●●
●●●●
●●●●
●
●●
●●
●

●
●
●
●●●

●
●

●●
●●●

●

●●●●

●

●

●●●●●

●

●

●●●●●●
●●●●●

●

●●●●●●
●●●●
●●●
●●

●

●●●
●

●

−4

−2

0

2

4

AmishAtrial_FibFraminghamJackson
TopMed Study

Q
ua

nt
ile

 N
or

m
al

ize
d 

He
m

og
lo

bi
n

TOPMed Study
Amish

Atrial_Fib

Framingham

Jackson

Quantile Normalized Hemoglobin

0.0

0.1

0.2

0.3

5 10 15 20
Hemoglobin

De
ns

ity

TOPMed Study
Amish

Atrial_Fib

Framingham

Jackson

Hemoglobin Densities

0.00

0.25

0.50

0.75

−4 −2 0 2 4
Quantile Normalized Hemoglobin

De
ns

ity
TOPMed Study

Amish

Atrial_Fib

Framingham

Jackson

Quantile Normalized Hemoglobin



TOPMed BMI Distributions

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●
●

●
●●

●

●
●

●

●

●●

●
●

●

●

●

●●

●

●●●
●

●

●
●●
●●

●

●
●
●
●●●

●

●
●●

●

●

●

●

●
●●

●
●

●

●

●

●

●●●

●

●

●
●●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●
●

●
●●●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●
●

●●

●●

●

●●
●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●
●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●●

●●

●●●

●●

●●●

●

●

●

●

●
●●
●

●

●

●

●

●●

●

●●

●

●
●●

●●

●

●

●
●

20

30

40

50

60

AmishCFSCOPDGeneFHSHVHJHS
TopMed Study

BM
I

TOPMed Study
Amish

CFS

COPDGene

FHS

HVH

JHS

BMI Boxplots

●

●

●
●

●●

●

●

●
●

●

●●●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●●●

●

●●

●●●

●●

●

●

●

●
●●
●

●

●
●
●

●

●
●

●

●●

●
●

●
●

●

●

●

●●
●

●
●●

●

●

●●

●
●

●

●

●

●●
●●

●

●

●

●

●

−4

−2

0

2

4

AmishCFSCOPDGeneFHSHVHJHS
TopMed Study

Q
ua

nt
ile

 N
or

m
al

ize
d 

BM
I TOPMed Study

Amish

CFS

COPDGene

FHS

HVH

JHS

Quantile Normalized BMI Boxplot

0.000

0.025

0.050

0.075

0.100

20 30 40 50 60
BMI

De
ns

ity

TOPMed Study
Amish

CFS

COPDGene

FHS

HVH

JHS

BMI Densities 

0.0

0.1

0.2

0.3

0.4

0.5

−4 −2 0 2 4
BMI

De
ns

ity
TOPMed Study

Amish

CFS

COPDGene

FHS

HVH

JHS

Quantile Normalized BMI Densities



Heterogeneity in Phenotypic Variance in TOPMed

• Extended LMM-OPS to allow for multiple random 
effects to be included in the model, in addition to a 
kinship/genetic relatedness matrix.

• Used LMM-OPS with additional random effects to 
allow for heterogeneous variances in TOPMed by 
study or self-reported race/ ethnicity. 



Heterogeneity in Hemoglobin Phenotypic 

Variances: By Study
• Association results for Hemoglobin allowing for  

heterogeneous  phenotypic variances
Heterogeneous Residual Variances by Study Homogenous Residual Variance 



Heterogeneity in BMI Phenotypic Variances 

• Association results for body mass index (BMI) 
allowing for  heterogeneous  phenotypic variances

Heterogeneous Residual Variances by Study Homogenous Residual Variance 



LMM with heterogenous
residual variances for BMI

• Residual variance components of BMI for a few 
studies in TOPMed

TopMed Cohort Study Phenotypic Residual 
Variances 

Jackson Heart Study 35.44 
CFS 52.33
Framingham Heart Study 13.14
Amish 12.19
COPDGene 26.61
HVH 61.31



Allowing for heterogeneity in variances: By Self-

Reported Race 

• There are limitations with modeling heterogenous
variances by study.

• Some TOPMed studies have multiple 
ethnicities/ancestries. 

• Also explored the differences in BMI distribution by 
self-reported race.



TOPMed BMI Distributions: By Race
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Heterogeneity in BMI Phenotypic Variances: Study 

vs. Self-Reported Race 
• Association results for body mass index (BMI) 

allowing for  heterogeneous  phenotypic variances
Heterogenous Residual Variance by Study Heterogenous Residual Variance by Race 



Hemoglobin Single Variant Tests: Mega-Analysis
• Hemoglobin data results for three phase I TOPMed

studies: Framingham Heart Study, Jackson Hearty Study, 
and the Amish

• Considered variants with minor allele count ≥ 10 in all 
studies combined: 29,342,569 variants tested for 
association



Hemoglobin Single Variant Tests: Meta-Analysis
• Association analysis conducted within each study 

separately
• Meta-analysis of the association results across all studies 
• 7,570,518  variants tested for association
• No significant results



Association testing with rare 

variants in TOPMed



TOPMed Association Analysis with 
rare variants

• There are an abundance of rare variants in the 
TOPMed WGS

• Phase 1 of TOPMed has 18,526 samples and 
219,154,455 variants.

• 95,252,627 of the variants are singletons
• Extended widely used aggregate tests, such as 

SKAT and burden tests, for association testing of 
multiple rare variants in TOPMed.

• Allow for heterogenous variances



TOPMed Hemoglobin

Used a sliding window for the units:
50 kilobases
142,293 windows
Considered rare variants only (MAF < 1%) in each window



SOFTWARE
• GENESIS:  R software package is available from 

Bioconductor
• Installation in R:

• source("https://bioconductor.org/biocLite.R")
• biocLite("GENESIS")

• Current release of GENESIS:
• PC-AiR
• PC-Relate

• Recent release includes LMM-OPS
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